

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMTL (19EC0410)

Course & Branch: B.Tech – ECE

Year &Sem: II-B.Tech & II-Sem

Regulation: R19

UNIT –I ELECTROSTATIC FIELDS

1	a	Define Coulomb's law and derive the force \mathbf{F} that exists between two unlike	[L1][CO1&2]	[6M]
		charges.		
	b	Three Point Charges $Q_1=1$ mc, $Q_2=2$ mc and $Q_3=-3$ mc are respectively	[L3][CO1&2]	[6M]
		located at $(0,0,4)$, $(-2,6,1)$ and $(3,-4,-8)$. Calculate the electric force and		
		electric field on Q_1 due to Q_2 and Q_3 .		
2	a	Find the electric field at a point P located with a distance of r from an infinite	[L1][CO1&2]	[7M]
		sheet with uniform surface charge density of $\rho_s C/m^2$.		
	b	A Point Charge of 20nc is Located at the Origin. Determine the Magnitude	[L3][CO1&2]	[5M]
		and direction of the electric field intensity at the Point $(1,3,-4)$.		
3	a	Define Gauss's Law. Explain briefly about Maxwell's 1 st equation.	[L1][CO1,2&3]	[8M]
	b	What are the advantages and applications of Gauss law?	[L1][CO1&2]	[4M]
4	a	Apply Gauss Law to evaluate the electric flux density at a point P due to the	[L3][CO1,2&3]	[6M]
		point charge located at the origin.		
	b	A Point Charge 100 pC is located at (4,1,-3) while the x-axis carries charge	[L3][CO1&2]	[6M]
		2η C/m. If the Plane z=3 is also carries charge 5η C/m ² , find E at (1,1,1).		
5	a	Evaluate the two Maxwell's equations for electrostatic fields and state them.	[L5][CO1,2&3]	[9M]
	b	List Maxwell equations for electrostatic fields in integral form.	[L1][CO1,2&3]	[3M]
6	a	Classify Maxwell equations for electrostatic fields in both differential and	[L4][CO1,2&3]	[6M]
		integral form.		
	b	Two point charges, $Q_A = +8 \ \mu C$ and $Q_B = -5 \ \mu C$, are separated by a distance r	[L3][CO1&2]	[6M]
		= 10 cm. What is the magnitude of the electric force between them?		
7	a	Define the Electric Flux Density. Determine the Electric flux density at a	[L1][CO1&2]	[8M]
		point P due to infinite line of uniform Charge density ρ_L C/m.		
	b	Point Charges $Q_1=4\mu c$, $Q_2=-5\mu c$ and $Q_3=2\mu c$ are located at $(0,0,1).(-6,8,0)$	[L3][CO1&2]	[4M]
		and (0,4,-3) respectively find D at the origin.		
8	a	Define Eclectic Potential. Find the electric potential for a point charge is	[L1][CO1&2]	[8M]
		located at origin.		
		Determine the Relationship between E and V.	[L5][CO1&2]	[4M]
9		plain the following with expression.	[L2][CO1,2&3]	[12M]
	a)	Coloumb's law. b) Electric field intensity. c) Gauss law.		
10	a	Deduce the electric field at a distance r due to an infinitely long straight line	[L4] [CO1&2]	[8M]
		of charge with a uniform charge density of $\rho_{\rm L} C/m$.		
	b	A charge of 5×10^{-8} C is distributed uniformly on the surface of a sphere of	[L3] [CO1&2]	[4M]
		radius 1 cm. Calculate the electric flux.		

1	a	Explain Biot-Savart's Law.	[L2][CO1&2]	[6M]
	b	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a	[L3][CO1&2]	[6M]
		Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large		
		circuit. Find H at (i) $A(2,3,0)$. (ii) $B(3,12,-4)$.		
2	a	Explain Ampere's Circuit Law.	[L2][CO1,2&3]	[6M]
	b	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L5][CO1&2]	[6M]
3	a	Determine Maxwell's Equations for Magnetostatic Field.	[L5][CO1,2&3]	[6M]
	b	Determine the Magnetic Flux Density due to Infinite Sheet of Current.	[L5][CO1&2]	[6M]
4	a	Discuss about Magnetic Vector and Scalar Potentials.	[L6][CO1&2]	[6M]
	b	Given Magnetic Vector potential $A = -\rho/4$ az wb/m, Calculate the total	[L3][CO1&2]	[6M]
		magnetic flux crossing the $\Phi = \pi/2, 1 \le \rho \le 2m, 0 \le z \le 5m$.		
5	a	Explain about magnetic scalar and vector potential for Magneto-statics.	[L2][CO1&2]	[6M]
	b	An infinitely filamentary wire carries a current of 2A in the +z direction.	[L3][CO1&2]	[6M]
		Calculate B at (-3,4,7).		
6	a	Determine the Magnetic Field Density due to Infinite line Current by	[L5][CO1&2]	[7M]
		applying Ampere's Circuit law.		
	b	List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2&3]	[5M]
7	a	Find the Magnetic field Intensity Due to a Straight current carrying	[L1][CO1&2]	[6M]
		filamentary conductor of finite length.		
	b	Find H at (-3,4,0) due to the Current Filament Shown in the Figure.	[L1][CO1,2&3]	[6M]
		Z		
		↑ → Z=0		
		34		
		-37/Ø P(-3,4,0)		
		4 V		
		×		
		3A		
		X		
8		Find H for a straight current carrying conductor using Biot Savart's law and	[L1][CO1&2]	[12M]
		Ampere's Circuit law.		
9	Ex	plain any two applications of Ampere's Circuit law.	[L2][CO1,2&3]	[12M]
10	a	A Current Distribution gives rise to the vector potential $A = X^2Ya_x + Y^2Xa_y + XYZa_z$	[L3] [CO1&2]	[6M]
		web/m. Calculate B .		
	b	Explain about Non-Existence of Magnetic Mono pole.	[L2] [CO2]	[6M]

UNIT –III MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1	a	Explain Faraday's laws in Electromagnetic induction.	[L2][CO1&2]	[7M]
	b	Prove that the Displacement Current Density $J_D = \frac{\partial D}{\partial t}$.	[L5][CO1,2&3]	[5M]
2	a	Determine the Transformer EMF for the time varying fields.	[L5][CO1,2&3]	[8M]
	b	Define Faraday's law?	[L1][CO1,2&3]	[4M]
3	a	Explain Faraday's law of electromagnetic induction and derive the Expression for Induced EMF.	[L2][CO1,2&3]	[6M]
	b	Explain the motional EMF and derive the expression for the maxwell equation.	[L2][CO1,2&3]	[6M]
4	a	Determine the Expressions for inconsistency of Ampere's law.	[L5][CO1,2&3]	[9M]
	b	Why ampere's Law is In-consistent.	[L1][CO2&3]	[3M]
5	a	Discuss Maxwell's equation in both differential and integral in final form	[L6][CO1,2&3]	[7M]
	b	An antenna radiates in free space and H= 50 $cos(1000t-5y)ax$ A/m. Calculate ω and β .	[L3][CO2&3]	[5M]
6	a	In free space, $E=20 \cos(\omega t-50x)ay V/m$. Calculate Jd, H .	[L3][CO2&3]	[7M]
	b	Translate the Maxwell's equations into word statement.	[L2][CO1,2&3]	[5M]
7	a	Prove that one of the Maxwell's equation is $\nabla \times E = -dB/dt$	[L5][C01,2&3]	[7M]
	b	In free space, $H=10 \sin(\omega t-100x)$ ay A/m. Calculate Jd, E.	[L3][CO2&3]	[5M]
8	a	Prove that one of the Maxwell's equation is $\nabla \times H = J_d + J_d$.	[L5][CO1,2&3]	[8M]
	b	An antenna radiates in free space and $E=80 \cos(500t-8z)ax V/m$. Calculate σ and β .	[L3][CO2&3]	[4M]
9	Ex	i) Motional EMF. (ii)Transformer EMF.	[L2][CO2&3]	[12M]
10	Ex	i) Faraday's law ii) Inconsistency of Ampere's law	[L2] [CO2&3]	[12M]

UNIT –IV EM WAVE PROPAGATION

1		Discuss about pointing theorem and poynting vector.	[L6][CO4&5]	[12M]
2	a	Explain and derive the characteristics of wave propagation in free space.	[L2][CO3,4&5]	[7M]
	b	Given that E=40 cos(10 ⁸ t - 3x) $a_y v/m$, Determine the direction of wave	[L3][CO4&5]	[5M]
		propagation, velocity of the wave, wave length.		
3		Electric field in free space is given by $E=50\cos(10^8t+\beta x)a_yv/m$	[L3][CO4&5]	[12M]
		a). Find the direction of wave propagation.		
		b). Calculate β and the time it takes to travel a distance of λ .		
		c). Sketch the wave at t= $0,T/4$ and T/2.		
4	a	Determine the expression for intrinsic impendence and propagation constant	[L5][CO4&5]	[7M]
		in a good conductor.		
	b	In a Nonmagnetic medium E=4 sin $(2\pi X 10^7 t - 0.8x) a_z v/m$, find ε_r, η .	[L3][CO4&5]	[5M]
5	a	Evaluate the wave characteristics of a uniform plane wave in free space.	[L5][CO4&5]	[7M]
	b	In free space (z ≤ 0), a plane wave with H = 10 cos (10 ⁸ t - βz) \hat{a}_x mA/m is	[L3] [CO4&5]	[5M]
		incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0, \mu = 8\mu_0$) in region $z > 0$.		
		Determine the reflected wave and the transmitted wave.		
6	a	Evaluate the wave equation in lossy dielectric medium for sinusoidal time	[L5][CO3,4&5]	[6M]
		variations.	FL 21/CO 4 8 51	
	b	In lossless medium $\eta = 40\pi$, $\mu_r = 1$, H=2 cos ($\omega t - z$) $\hat{a}_x + 5\sin(\omega t - z)$	[L3][CO4&5]	[6M]
		$\widehat{\boldsymbol{a}}_{\boldsymbol{y}}$. Find $\boldsymbol{\varepsilon}_{\boldsymbol{r}}, \boldsymbol{\omega}, \boldsymbol{E}$ for the medium.		
7	a	Evaluate the expressions for attenuation constant and phase shift constant of	[L5][CO4&5]	[6M]
	1	lossy dielectric medium.	[] 2][(0) 4 9 5]	
	b	A plane wave propagating through medium with $\varepsilon_r = 8$, $\mu_r = 2$ has the	[L3][CO4&5]	[6M]
		electric field intensity $E = 0.5 \ e^{-jz3} \sin (10^8 t - \beta z) \ \hat{a}_x V/m$. Determine wave		
0		velocity, wave impedance and magnetic field intensity.	[I_5][CO49-5]	[13]
8		Evaluate the expressions for reflection coefficient and transmission coefficient by a normal incident wave for a dielectric medium.	[L5][CO4&5]	[12M]
9	Ev	splain the followings with an expression.	[L2][CO4&5]	[12M]
9		Linear polarization ii) Circular polarization iii) Elliptical polarization	$[L_2][CO4\alpha_3]$	
10	In	a medium, $E = 14e^{-0.05x} \sin (2 \times 10^8 \text{ t} - 2x) \hat{a}_z$ V/m Determine the	[L3] [CO4&5]	[12M]
10	1	followings: $L = 14e^{-14e^{14e^{14e^{14e^{14e^{14e^{14e^{14e^{$		
		i) The propagation constant		
		ii) The wavelength		
		iii) The speed of the wave		
		iv) Sketch the wave at $t=0,T/4 \& T/2$		
L	I			l

UNIT –V TRANSMISSION LINES

1	_	E-shorts the emotion for each and encount of every moint in a transmission		[7]]
1	a	Evaluate the equation for voltage and current at any point in a transmission	[L5][CO6]	[7M]
	1	line.		[5]/[]
	b	Discuss about Transmission line Parameters.	[L6][CO6]	[5M]
2	a	Evaluate the equation for Characteristic Impedance of a Transmission line.	[L5][CO6]	[6M]
	b	A telephone line has the following parameters: $R = 30 \Omega/km$, $G = 0 L = 100 M/km$	[L3][CO6]	[6M]
		100mH/km, C = 20μ F/m. At 1kHz, calculate the characteristic impedance,		
		propagation constant and velocity of the signal.		
3	a	Explain about S-Circle, r-Circle and x-Circle in smith chart.	[L2][CO6]	[6M]
	b	A distortion less line has $Z_0=60 \Omega$ Attenuation constant = 20 mNp/m and	[L3][CO6]	[6M]
		u=0.6c (c is velocity of light) Find the primary parameters of the		
		transmission line(R L C G and λ) at 100MHz.		
4	a	Evaluate the equation for Input Impedance of the transmission line.	[L5][CO6]	[6M]
	b	A Certain transmission line 2m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ bd/m,	[L3][CO6]	[6M]
		$\beta=1$ rad/m, and Z ₀ =60+j40 Ω . If the line is connected to a source of		
		10angle(0^0) V, Z _g = 40 Ω and terminated by a load of 20+j50 Ω , determine the		
		input impedance.		
5	a	Relate SWR and reflection coefficient.	[L2][CO6]	[6M]
	b	Explain the applications of transmission lines.	[L2] [CO6]	[6M]
6	a	With neat sketch explain about Primary and Secondary constants of	[L2][CO6]	[6M]
		transmission line.		
	b	A low loss transmission line of 100 Ω characteristics impedance is connected	[L3][CO6]	[6M]
		to a load of 200 Ω . Calculate the voltage reflection coefficient and the		
		standing wave ratio.		
7		A 50 Ω lossless transmission line is terminated on a load impedance of ZL	[L3][CO6]	[12M]
		= $(25 + j 50)\Omega$. Use the smith chart to find.		
		i) Voltage reflection coefficient.		
		ii) VSWR.		
		iii) input impedance of the line, given that the line is 0.3λ long.		
8	6	Evaluin about the amith about for finding the CWD and Definition		[0] /[]
o	a	Explain about the smith chart for finding the SWR and Reflection co- efficient.	[L2][CO6]	[8M]
	h	List out the applications of smith chart?	[L1][CO6]	[4M]
9		30 m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is	[L3][CO6]	[12M]
,		minated with a load $Z_L = 60 + j 40\Omega$. If $u = 0.6 C$ on the line, find the		
		lection coefficient, the standing wave ratio S and the input impedance.		
10		lossless transmission line with $Z_0=50 \ \Omega$ is 30m long and operates at 3MHz.	[L3][CO6]	[12M]
10	A	The line is terminated with a load $ZL=70 +j50\Omega$, If u=0.6c on the line.		
		Compute reflection coefficient, standing wave ratio and Input impedance,		
		•••••		
		load impedance, SWR and complex reflection coefficient (i) without using smith chart		
		(i) Using smith chart		
		(ii) Using sinitii thatt		

1. Mr. J.RAJANIKANTH

2. Mr. K.D MOHANA SUNDHARAM

Associate Professor/ECE

Prepared by:

Assistant Professor/ECE